87 research outputs found

    Typical Geometry, Second-Order Properties and Central Limit Theory for Iteration Stable Tessellations

    Full text link
    Since the seminal work of Mecke, Nagel and Weiss, the iteration stable (STIT) tessellations have attracted considerable interest in stochastic geometry as a natural and flexible yet analytically tractable model for hierarchical spatial cell-splitting and crack-formation processes. The purpose of this paper is to describe large scale asymptotic geometry of STIT tessellations in Rd\mathbb{R}^d and more generally that of non-stationary iteration infinitely divisible tessellations. We study several aspects of the typical first-order geometry of such tessellations resorting to martingale techniques as providing a direct link between the typical characteristics of STIT tessellations and those of suitable mixtures of Poisson hyperplane tessellations. Further, we also consider second-order properties of STIT and iteration infinitely divisible tessellations, such as the variance of the total surface area of cell boundaries inside a convex observation window. Our techniques, relying on martingale theory and tools from integral geometry, allow us to give explicit and asymptotic formulae. Based on these results, we establish a functional central limit theorem for the length/surface increment processes induced by STIT tessellations. We conclude a central limit theorem for total edge length/facet surface, with normal limit distribution in the planar case and non-normal ones in all higher dimensions.Comment: 51 page

    Shape-Driven Nested Markov Tessellations

    Full text link
    A new and rather broad class of stationary (i.e. stochastically translation invariant) random tessellations of the dd-dimensional Euclidean space is introduced, which are called shape-driven nested Markov tessellations. Locally, these tessellations are constructed by means of a spatio-temporal random recursive split dynamics governed by a family of Markovian split kernel, generalizing thereby the -- by now classical -- construction of iteration stable random tessellations. By providing an explicit global construction of the tessellations, it is shown that under suitable assumptions on the split kernels (shape-driven), there exists a unique time-consistent whole-space tessellation-valued Markov process of stationary random tessellations compatible with the given split kernels. Beside the existence and uniqueness result, the typical cell and some aspects of the first-order geometry of these tessellations are in the focus of our discussion

    Geometry of iteration stable tessellations: Connection with Poisson hyperplanes

    Full text link
    Since the seminal work by Nagel and Weiss, the iteration stable (STIT) tessellations have attracted considerable interest in stochastic geometry as a natural and flexible, yet analytically tractable model for hierarchical spatial cell-splitting and crack-formation processes. We provide in this paper a fundamental link between typical characteristics of STIT tessellations and those of suitable mixtures of Poisson hyperplane tessellations using martingale techniques and general theory of piecewise deterministic Markov processes (PDMPs). As applications, new mean values and new distributional results for the STIT model are obtained.Comment: Published in at http://dx.doi.org/10.3150/12-BEJ424 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm). arXiv admin note: text overlap with arXiv:1001.099

    Intrinsic Volumes of the Maximal Polytope Process in Higher Dimensional STIT Tessellations

    Get PDF
    Stationary and isotropic iteration stable random tessellations are considered, which can be constructed by a random process of cell division. The collection of maximal polytopes at a fixed time tt within a convex window WβŠ‚RdW\subset{\Bbb R}^d is regarded and formulas for mean values, variances, as well as a characterization of certain covariance measures are proved. The focus is on the case dβ‰₯3d\geq 3, which is different from the planar one, treated separately in \cite{ST2}. Moreover, a multivariate limit theorem for the vector of suitably rescaled intrinsic volumes is established, leading in each component -- in sharp contrast to the situation in the plane -- to a non-Gaussian limit.Comment: 27 page

    Limit theory for planar Gilbert tessellations

    Full text link
    A Gilbert tessellation arises by letting linear segments (cracks) in the plane unfold in time with constant speed, starting from a homogeneous Poisson point process of germs in randomly chosen directions. Whenever a growing edge hits an already existing one, it stops growing in this direction. The resulting process tessellates the plane. The purpose of the present paper is to establish law of large numbers, variance asymptotics and a central limit theorem for geometric functionals of such tessellations. The main tool applied is the stabilization theory for geometric functionals.Comment: 12 page
    • …
    corecore